RUSSIAN ACADEM Y OF AGRICULTURAL SCIENCES RUSSIAN ACADEMY O F SCIENCES RUSSIAN FEDERATION MINISTRY OF SCIENCES AND TECHNICAL POLICY Russian Institute of vegetable and seeds breeding Institute of fundemental problem s of biology Russian academy of sciences Institute of vegetable breeding Russian academy of agricultural sciences Scientific production firm «Phitoccology»

the 3d

INTERNATIONAL SYMPOSIUM

« New and nontraditional plants and prospects of their utilization»

(june, 21-25,1999)

Moscow-Pushino-1999

	Г. П. Федоссева, Т. Ф. Оконспинкова, Е. П. Артемьсва, О. В. Халатин	
	Морфологические особенности генеративных органов и характеристика	
	разных уровней организации фотосинтезирующей системы у подвидов	
	Amaranthus Caudatus L. (Амарант Хвостатый)	165-168
	G. P. Fedosceva, T. F. Okoneshnikova, E. P. Artemjeva, O. V. Khalatyan	1054106
	Morfological peculiarities of generative organs and characteristic of different	1. 1
	levels of organization of photosynthetic system subspecies Amaranthus caudatas L.	
	С. С. Хирург, А. Б. Вышитакалюк, Н. А. Соснина, А. А. Лапин,	
	С. Т. Минзанова, В. Ф. Миронов, А. И. Коновалов. Влияние пектиновых	
	н белковых гидролизатов на рост и функциональное состояние	
	ремонтного молодняка кур	169-172
	S. S. Kheeroug, A. B. Vyshtakalius, N. A. Sosnina, A. A. Lapin,	109-172
	S. T. Minzanova, V. F. Mironov, A. I. Konovalov The influence of pectin	
	and protein hydrolyzates of amaranth on development and functional state	
	of remount young poultry	
	S. Allahverdiev E. Kirdar, E. Zynalova S. Sultanova	
	Enviromental stresses and problems on plant growth	172 175
	S. Allahverdiev E. Kirdar, S. Barutcu, D. Rasulova Physiological and biochemical	173-175
	reaction of forest and agricultural plants on the environmental stresses	176-178
	S. Allahverdiev, R. Ozen, E. Kirdar, N. Saracoghi Forest is an energy-storing area	179-180
	A. Aytekin, B. Kaygin, G Gunduz, S. Krayilmazlar, S. Ozsahin	175-180
	Preparing drying schedules of Fraxinus excelsion L.	181-183
	M. Dogan Estimation of the toxic elements from the soil to mint	101-103
	(Mentha Longifolium) which irrigated by the waste water and fertilization	184-186
	O. Dogan, R. Tipirdamaz, S. Sozeri, H. Ustun, D. Ozkum Proline and mineral element	104-160
	contents of some halophyte plants from soyfe salt lake in Turkey	197 190
	C. Durkaya, S. Nafisi The economical value and losses of Pinus brutia	187-189
	D. (Ten.) in Turcey	190-192
	S. Ellialtioglu, R. Tipirdamaz, B Sandi Studies on the induction of haploidy	
	S. I. Gani-zade, S. M. Fataliyeva, S. R. Allahverdiev, S. Nafisi	193-195
	The Dynamic of growth substances under temperature stress	106 109
	G. Gunduz, H. Vurdu, B. Kaygin, A Aytekin Annual ring properties of (Camiyani black	196-198
	pine) Pinus nigra Arnold var. pallasiana Grown in Turccy	100 001
		199-201

ANNUAL RING PROPERTIES OF (CAMIYANI BLACK PINE) Pinus nigra Arnold var.paliasiana GROWN IN TURKEY

Gokhan GUNDUZ, Hasan VURDU, Bulent KAYGIN, Alper AYTEKİN

Zonguldak Karaelmas University, Faculty of Forestry, Department of Forest Industry Engineering, 74100 Bartın-TURKEY

The distribution areas of Camiyani Black Pine (*Pinus nigra* Arn. var. *paliasiana*), a site stand, in Turkey is the Western Blacksea Region This relict pine species grows predominantly at four sites totally on 30000 hectares in Yenice - Karabuk Because of its outstanding properties and rarity it is under protection since 1986 by General Directorate of Forestry. In practice, only collapsed and broken individuals subjected to lumber production (5000-6000 m/year) (1).

The most important property of this species is its straight and uniform stem and evident - large heartwood. For these reasons, it has been highly requested by the furniture industry. Physical wood properties of this species have not been investigated yet In this study, annual ring - latewood widths and the percentages of latewood over annual ring widths were determined

Five trees used as research material obtained from Yenice region, Bakraz site, division number 104. Measured ages of trees used were 222, 225, 230, 231, 235 years successively. The test specimens were taken at 1.30 m stem height and prepared with 3 cm widths in the direction of pith to bark at cross-section. Annual ring and latewood widths were measured by means of a microscope with 1/100 mm precision.

Average, maximum and minimum annual ring widths measured were 1.390 mm, 3.588 mm and 0.220 mm respectively. Maximum annual ring width was found at first eleven years. Aiterwards, annual ring width decreases rapidly up to 100 years. Between 100 - 180 years of ages ring diminution is much more slowly. But of the ages of 180 - 200 years an increase was observed. Minimum annual ring width was found at the level of 230 years ages.

Average, maximum and minimum latewood widths measured were 0.547 mm, 1.344 mm and 0.02 mm respectively (Figure 1).

Average, maximum and minimum latewood percentages measured were 40.85 %, 55.94 % and 7.69% respectively. 77% of annual rings contains more than 40% latewood. Generally, latewood rates increase with the decrease of annual ring width and higher values are obtained between 100 - 200 ages having annual ring width about 1 mm (Figure 2).

Annual ring width and latewood ratios give an opinion about physical and mechanical properties of wood. According to DIN 4074 timber standards for softwoods, timbers having annual rings of more than 4 mm over half of the cross-section are not accepted. Woods having narrower annual rings and higher latewood ratios are preferred in softwoods. Hence, this requests in higher specific gravity, and higher mechanical strengths.

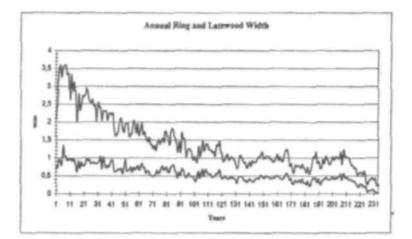


Figure 1. Annual ring and latewood width.

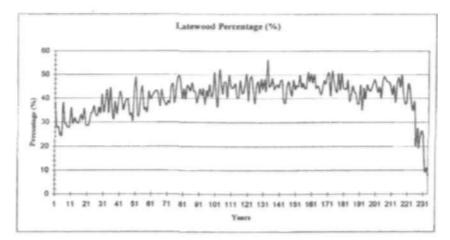


Figure 2. Latewood percentage.

REFERENCES

1. Anon., (1998) Directorate ofForestry in Yenice, Production Report